Antityrosinase Activities of *Thespesia populnea* Bark and *Phyllanthus emblica* Fruit

1Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka.
2Department of Prosthetic Dentistry, Faculty of Dental Sciences, University of Peradeniya, Sri Lanka.

Corresponding author: E-mail: kumudup@pdn.ac.lk

Authors’ contributions

This work was carried out in collaboration between all authors. Author HKIP concept and design of the study, obtaining grants, literature search, data collection, analysis and interpretation, manuscript preparation and critical revision of the manuscript. Authors APCP, KDUD, RMUKR and DKLRG collected plant parts and performed the experiments. Author JAVPJ collaborated with the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMPS/2018/40775

Editor(s):
(1) Julius Olugbenga Soyinka, Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.

Reviewers:
(1) César Luiz Da Silva Guimarães, Brazilian Institute of Environment And Natural Renewable Resources, Brazil.
(2) Adjadj Moufida, University of Constantine 3, Algeria.

Complete Peer review History: http://www.sciencedomain.org/review-history/24135

Received 30th January 2018
Accepted 5th April 2018
Published 12th April 2018

ABSTRACT

Aims: Currently there is enormous demand for skin-lightening agents, creating a quest for identification of new substances. Tyrosinase has become the main drug target for reducing skin pigmentation. The objective of this study was to detect tyrosinase inhibitory effects of eight medicinal plants that are used to treat skin conditions.

Study Design: *In vitro* assay.

Place and Duration of Study: Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Sri Lanka, from June 2016 to December 2017.

Methodology: Tyrosinase inhibitory effects of methanol extracts of eight plant species that are used to treat various skin conditions were measured using 3,4-Dihydroxy-L-phenylalanine (L-DOPA) as the substrate. Kojic acid was used as the positive control. IC₅₀ values of extracts with

Original Research Article
high activity were measured using a range of concentrations. Statistical significance of the differences between the inhibitory effects was calculated using ANOVA.

Results: Thespesia populnea bark showed the highest inhibition among the tested, with an IC₅₀ of 190 µg/mL. Phyllanthus emblica fruit also showed higher inhibitory effect with IC₅₀ value of 251 µg/mL. IC₅₀ value of kojic acid (3.4 µg/mL) against tyrosinase was significantly lower than that of P. emblica and T. populnea. Even though Santalum album bark and Vernonia cinerea plant showed 36.3 and 32.8% inhibitions respectively at 0.5 mg/mL, these effects did not show a dose-dependent increase. Extracts of Coscinium fenestratum, Persea Americana, Vigna radiata and Vigna unguiculata demonstrated only lower inhibitory effects on tyrosinase.

Conclusion: Current study reveals higher antityrosinase activities in methanol extracts of P. emblica fruit and T. populnea bark.

Keywords: Tyrosinase inhibitors; Thespesia populnea; Phyllanthus emblica.

1. INTRODUCTION

Colour of the human skin is mostly determined by the degree of synthesis of dark macromolecular pigment melanin [1]. Melanin protects the skin from a variety of detrimental agents such as free radicals and UV radiation [2]. However, an increased amount of melanin synthesis occurs as a result of genetic and environmental factors causing pigmentary skin disorders such as melasma, freckles and age spots [3]. Abnormal melanin deposition in the skin has a great impact on the demand for cosmetics and has prompted research and development of agents that could interfere with melanin synthesis [1].

Melanogenesis occurs in melanosomes, a specialized organelle found in epidermal melanocytes through a series of enzyme-catalyzed reactions [4]. Melanogenesis is commenced with the enzyme tyrosinase, which catalyses the rate-limiting step and the remaining reactions will follow spontaneously [4]. Tyrosinase (polyphenol oxidase) is a copper-containing monooxygenase and is located in the membranes of melanosomes. It catalyses two reactions with various phenolic substrates. Two responses are the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) and oxidation of L-DOPA to DOPA-quinone [5]. Highly reactive quinones polymerize spontaneously to form high-molecular-weight pigments [5].

Currently, there is a massive demand across Asia for cosmetics/ cosmeceuticals used in skin-lightening, creating a quest for identification of new substances. As the regulatory enzyme of melanin synthesis, tyrosinase has become a widespread drug target used to minimise skin pigmentation in therapeutics and cosmetics [1,6]. Well, known tyrosinase inhibitors such as arbutin and kojic acid have shown only low inhibitory activity against pigmentation in melanocytes in a clinical trial [7]. Hydroquinone used as a whitening compound in some cosmetics is considered cytotoxic and mutagenic to mammalian cells [8]. Therefore, it is necessary to search for new tyrosinase inhibitors from natural resources that do not have side effects [9]. More than 200 medicinal plants that are used to enhance the health and beauty of skin are described in Ayurveda as varnya drugs [10].

The objective of this study was to detect tyrosinase inhibitory effects of eight medicinal plants that are traditionally used to treat skin conditions.

2. MATERIALS AND METHODS

2.1 Plant Material

Parts from eight plants that are traditionally used to treat various skin conditions were selected (Table 1). Plants were authenticated by the Deputy Director, National Herbarium, Royal Botanical Garden, Peradeniya. Plant materials were cleaned, dried under shade for approximately one week and powdered using a grinder. Dry powder (10 g) of each plant part was extracted with methanol three times (100 ml) using a sonicator [11]. Filtrate was dried by evaporating methanol below 50°C using a rotary evaporator. Extracts were stored at room temperature until further investigation. Extracts were dissolved in phosphate buffer (pH 6.5) before the assay to make 10 mg/mL extracts. DMSO was used for extracts with poor water solubility to yield 100 mg/mL solutions and then diluted to 10 mg/mL with phosphate buffer.
2.2 Measurement of Tyrosinase Activity

Tyrosinase activity of the test samples was measured with the method of Vaibhav and Lakshaman with modifications [12]. Fifty microliter of 500 U/mL tyrosinase enzyme from mushroom (Sigma) was pre-incubated with phosphate buffer (pH 6.5) and 50 µl of 10 mg/mL plant extracts for 10 min at 25°C. Respective control was prepared in the absence of extracts and the blanks were prepared by adding 50 µl of phosphate buffer instead of tyrosinase. Then 200 µl of 1.78 mM 3,4-Dihydroxy-L-phenylalanine (L-DOPA) (Sigma) was added and mixed. Total volume of the reaction mixture was 1 mL. Reaction mixtures were incubated for 10 min at 25°C and exactly after 10 min incubation, absorbance was read at 475 nm. Kojic acid (Sigma) was used as the positive control. Each measurement was taken in duplicate and on three separate occasions.

Inhibitory effects on tyrosinase activity were calculated using following formula. IC50 values of extracts with high activity were measured using a range of extract concentrations.

Percentage inhibitory effect

\[\text{Percentage inhibitory effect} = \left[\frac{(\text{Control} - \text{Control blank}) - (\text{Test} - \text{Test blank}) \times 100}{\text{Control} - \text{Control blank}} \right] \]

2.3 Statistical Analysis

Means and standard deviations were calculated using measurements taken on three separate occasions. Statistical significance of the differences was calculated using ANOVA. P<0.01 was considered as statistically significant.

3. RESULTS AND DISCUSSION

3.1 Results

Percentage inhibitions of the eight methanol extracts on tyrosinase and IC50 values of two extracts and positive control are shown in Table 2. T. populnea showed the highest inhibition among the tested extracts, with an IC50 of 190 µg/mL (Table 2 and Fig. 1). P. emblica also showed higher inhibitory effect with IC50 value of 251 µg/mL. These effects were significantly higher than those of the other six plants (p<0.002). Even though S. album and V. cinerea showed a moderate inhibition at 0.5 mg/mL (36.3 and 32.8% respectively), it was unable to calculate their IC50 values as the effects were not dose-dependent (Fig. 2). Extracts of C. fenestratum, P. Americana, V. radiata and V. unguiculata showed only lower inhibitory effects on tyrosinase (2.2-14.4%) at 0.5 mg/mL (Table 2). IC50 value of kojic acid (3.4 µg/mL) against tyrosinase was significantly lower than that of P. emblica and T. populnea (p<0.0008).

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Mean (%)</th>
<th>SD</th>
<th>IC50 (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coscinium fenestratum</td>
<td>10.79</td>
<td>1.80</td>
<td>NA</td>
</tr>
<tr>
<td>Persea americana</td>
<td>14.42</td>
<td>4.23</td>
<td>NA</td>
</tr>
<tr>
<td>Phyllanthus emblica</td>
<td>53.35*</td>
<td>1.65</td>
<td>251</td>
</tr>
<tr>
<td>Santalum album</td>
<td>36.36</td>
<td>4.23</td>
<td>**</td>
</tr>
<tr>
<td>Thespesia populnea</td>
<td>70.54*</td>
<td>6.33</td>
<td>190</td>
</tr>
<tr>
<td>Vernonia cinerea</td>
<td>32.82</td>
<td>3.31</td>
<td>**</td>
</tr>
<tr>
<td>Vigna radiata</td>
<td>2.26</td>
<td>1.14</td>
<td>NA</td>
</tr>
<tr>
<td>Vigna unguiculata</td>
<td>7.06</td>
<td>2.61</td>
<td>NA</td>
</tr>
<tr>
<td>Kojic acid</td>
<td>3.4***</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean inhibitory effects were obtained at 0.5 mg/mL.

*Inhibitory effects of P. emblica and T. populnea were significantly different from others (p<0.002). ** S. album and V. cinerea did not show a dose-dependent increase in inhibitory activity. *** IC50 of Kojic acid was significantly lower than that of P. emblica and T. populnea (p<0.0008).

2.3 Discussion

In the present study, parts from eight plants used as remedies for various skin ailments or as beautifying agents were selected to evaluate for their efficacies against tyrosinase activity.
Phenolic compounds have demonstrated scientific evidence on multiple beneficial effects on skin. They eliminate factors causing skin ageing and damage [13]. There is a wide range of evidence to support the antioxidant, anti-inflammatory and antimicrobial effects, anti-ageing and skin renewal properties and stimulatory effects on synthesis of collagen and
elastin [13]. Phenolics were shown to suppress melanin production in skin cell cultures [13]. Being substrate (tyrosine) analogues, some phenolics such as resveratrol have demonstrated to be effective in inhibiting tyrosinase [13]. Quercetin exhibited the strongest tyrosinase inhibition (IC$_{50}$ 14.29 µM) among eight bioactive compounds isolated from Hypericum uralensis [14]. Licuraside, isoliquiritin, and licochalcone A which are flavonoids isolated from Glycyrrhiza uralensis and Glycyrrhiza inflata were found to be competitive inhibitors of tyrosinase with IC$_{50}$ values of 0.072, 0.038, and 0.026 mM, respectively [15].

P. emblica is long been used in folk medicine to treat number of metabolic, inflammatory and skin diseases and for beauty care [16]. P. emblica fruit which is a rich source of phenolic compounds with high antioxidant activity is used in several varnya formulations in Ayurveda [17]. A HPLC fraction rich in antioxidants isolated from P. emblica fruits has demonstrated skin lightening effects [18]. In another study, a fraction rich in antioxidants and low molecular weight hydrolysable tannins from P. emblica fruits inhibited melanin production in melanocyte cultures and in vivo [19]. Inhibition of tyrosinase, inhibition of Fe$^{2+}$/H$_2$O$_2$-induced melanogenesis (due to chelation with Fe$^{2+}$) and inhibition of superoxide anion-induced melanogenesis (by scavenging superoxide anions) were identified as mechanisms of action responsible for skin lightening effects of P. emblica fruits [19]. Ethanol and methanol extracts of P. emblica branch extracts demonstrated inhibition of tyrosinase activity with lower IC$_{50}$ values (247 and 194 µg/mL respectively) than that of ethanol extracts of P. emblica fruits (4347 µg/mL) [20]. Ethanol extract of P. emblica branch also inhibited tyrosinase mRNA expression in murine melanoma cells [20]. Gallic acid and vanillic acid were the major phenolic compounds identified in those extracts of P. emblica branch [20]. Present study supports the previous evidence on tyrosinase inhibitory effects of the P. emblica fruit. However, IC$_{50}$ value obtained against tyrosinase in the current study with methanol extract was much lower (251 µg/mL) than that of values reported for fruit ethanol extract (4347 µg/mL).

S. album (Sandalwood) oil has been applied topically for centuries in traditional medicine to beautify the skin [21] S. album oil is used in number of fairness cosmetics and perfumes [22]. Potent inhibitory effects of sandalwood oil on tyrosinase was revealed with an IC$_{50}$ of 171 µg/mL. In the same study, strong inhibitory effects of α-santalol, the major constituent of the oil on tyrosinase was identified [22]. The present study reveals that the bark of S. album possesses some inhibitory effect on tyrosinase even though the effect was not dose-dependent.

T. populnea bark is traditionally used to treat number of skin conditions such as scabies, psoriasis, eczema, ringworm infections [23] and for wound healing [24]. The decoction of the bark is commonly used for the treatment of skin and liver diseases. Bark is known to possess antioxidant, anti-inflammatory activities and hepatoprotective effects [23]. The current study reveals an additional benefit of the T. populnea bark extracts with a low IC$_{50}$ value against tyrosinase (190 µg/mL) suggesting its skin lightening effects. Hepatoprotective effects of phenolic acid rich fraction isolated from T. populnea bark were demonstrated in rats against CCl$_4$, acetaminophen and thioacetamide [25]. When methanol extracts of stem barks of five plants, Ficus benghalensis, F. glomerata, F. religiosa, F. viens and T. populnea were evaluated, highest DPPH radical scavenging action and highest superoxide scavenging potential were revealed in T. populnea [26]. Furthermore presence of high amount of tannins and phenolics and good Fe$^{2+}$ reducing power in T. populnea were identified [26].

V. cinerea whole plant is used in Ayurveda for curing fever, blisters, boils and as a blood purifier [27]. V. cinerea extracts have shown therapeutic effects against chronic skin disorders. This plant has demonstrated wound healing effects, anti-inflammatory effects, immunomodulatory effects, antioxidant effects and antibacterial activity which are beneficial effects with reference to maintenance of skin health [28,29]. The present study reveals some inhibitory effects of V. cinerea on tyrosinase. However, the effect was similar to that of S. album bark with no dose-dependence on inhibitory effects on tyrosinase.

Seeds of Vigna genus are consumed as cheap sources of proteins and are beneficial as low glycaemic index foods [30]. These plants are comprised of number of bioactive compounds such as phytic acid, phenolic compounds and saponins. V. radiata is used in Asian countries as a soup to relieve heat stress [30]. V. radiata paste is used to treat acne, eczema, dermatitis and reduce itchiness [31]. An ethyl acetate fraction obtained from 70% ethanol extract of V. radiata
showed highest tyrosinase inhibitory activity when compared with Dichloromethane [31] and n-butanol and residual fractions. Two flavonoids, vitexin and isovitexin, isolated from the ethyl acetate fraction showed inhibitory activities, with IC\textsubscript{50} values of 6.3 and 5.6 mg/mL, respectively which are considerably higher values [32]. A product from V. unguiculata seed extract was patented to be used for various applications including treatment of disorders affecting the skin [33]. In the current study, further investigations were not conducted with C. fenestratum, P. americana, V. radiata and V. unguiculata to assess IC\textsubscript{50} values as the inhibitory effects observed at 0.5 mg/mL against tyrosinase were rather low (2.3 to 14.4%).

4. CONCLUSION

The current study reveals significantly high antityrosinase activities in methanol extracts of P. emblica fruit and T. populnea bark among eight plant extracts investigated. To the best of our knowledge, this is the first evidence reported on the antityrosinase effect of T. populnea bark extracts. Further studies are necessary to validate in vivo efficacy and safety of these extracts.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

University of Peradeniya research grant RG/2016/41/M for funding, Mr. N. Perera for assistance with preparing plant extracts and Deputy Director, National Herbarium, Peradeniya for identification and authentication of plants.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

11. Poongunran J, Perera HKI, Fernando WIT, Jayasinghe L, Sivakanesan R. α-

31. Tang D, Dong Y, Ren H, Li L, He C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts

© 2018 Perera et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history/24135