Reproductive and Oxidative Stress Toxicity of Dolutegravir-Based Combination Antiretroviral Therapy in Drosophila melanogaster

Main Article Content

Walter Mdekera Iorjiim
Simeon Omale
Great David Bagu
Steven Samuel Gyang
Emmanuel Taiwo Alemika


Background/Objective: Dolutegravir-based highly active antiretroviral therapy (DTG-HAART) is the preferred regimen in the management of HIV/AIDS. However, the reproductive and oxidative stress toxicity of DTG-HAART is unknown.  This study was designed to investigate the reproductive and oxidative stress toxicity of DTG-HAART in Drosophila melanogaster.

Materials and Methods: We performed all the experiments at the Centre of Excellence in phytomedicine Research and Development (ACEPRD), University of Jos, Nigeria, in 2019.  D. melanogaster, (1-4 days old), were fed with ten different concentrations of DTG-HAART (range 15 mg -595 mg) or 1000 mL distilled water per 10 g food for seven days to calculate the LD50, then treated with 93.11 mg, 46.56 mg, 23.28 mg, 11.64 mg or 1000 µL distilled water each per 10 g fly food for five days in five replicates. Subsequently, longevity, fly fecundity, and negative geotaxis evaluated. Also, activities of Acetylcholinesterase, Glutathione-S-transferase, Superoxide dismutase, Catalase, as well as Total thiol, and Malondialdehyde levels were investigated in the whole fly homogenate. Statistical values at P<0.05 were considered significant.

Results: The LD50 of DTG-HAART in D. melanogaster was 106.4 mg. The result showed significantly decrease (P<0.001) in mean lifespan, fly emergence, Total thiol content, Acetylcholinesterase, Glutathione-S-transferase, Catalase, and Superoxide dismutase activities in the exposed groups compared to the unexposed. Inversely, the Malondialdehyde level in the test groups was significantly (P<0.001) elevated compared to unexposed.

Conclusion: Collectively, our results suggest that   DTG-HAART toxicity was associated with reproductive deficits and oxidative stress induction in D. melanogaster, here observed as reduced fly fecundity, mean lifespan, AChE activity, antioxidant parameters, and elevated MDA level. This study, thus, raised concerns for long term use of DTG-HAART by HIV patients.

Dolutegravir, superoxide dismutase, Drosophila melanogaster, malondialdehyde

Article Details

How to Cite
Iorjiim, W. M., Omale, S., Bagu, G. D., Gyang, S. S., & Alemika, E. T. (2020). Reproductive and Oxidative Stress Toxicity of Dolutegravir-Based Combination Antiretroviral Therapy in Drosophila melanogaster. Journal of Advances in Medical and Pharmaceutical Sciences, 22(6), 26-40.
Original Research Article


Oyeyemi IT, Alabi OA, Adetona OM, Alimba CG. Genetic and reproductive toxicity of lamivudine, tenofovir disoproxil fumarate , efavirenz and their combination in the bone marrow and testicular cells of male mice. Ann Sci Technol. 2020;5(1):1-10.


Frank TD, Carter A, Jahagirdar D, et al. Global, regional, and national incidence, prevalence, and mortality of HIV. and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV. 1980-2019;6(12):831-e859.


Awodele O, Popoola TD, Idowu O, Bashua BM, Awolola NA, Okunowo WO. Investigations into the Risk of Reproductive Toxicity Following Exposure to Highly Active Antiretroviral Drugs in Rodents. Tokai J Exp Clin Med. 2018;43(2):54-63.


Obiako RO, Haruna MM, Sani GB, et al. Adverse reactions associated with antiretroviral regimens in adult patients of a university teaching hospital HIV program in Zaria, Northern Nigeria: An observational cohort study. J Antivirals Antiretrovir. 2012;4(1):006-013.


Falang KD, Akubaka P, Jimam NS. Patient factors impacting antiretroviral drug adherence in a Nigerian tertiary hospital. J Pharmacol Pharmacother. 2012;3(2).


Case KK, Johnson LF, Mahy M, Marsh K, Supervie V, Eaton JW. Summarizing the results and methods of the 2019 Joint United Nations Programme on HIV/AIDS HIV estimates. Aids. 2019;33(3):S197-S201.


Mahy M, Marsh K, Sabin K, Wanyeki I, Daher J, Ghys PD. HIV estimates through 2018: Data for decision-making. Aids. 2019;33(3):S203-S211.


Province L, Africa S. Determinants of poor adherence to antiretroviral treatment using a combined effect of age and education among human immunodeficiency virus infected young adults attending care at Letaba Hospital HIV Clinic, Limpopo Province, South Africa. PanAfrican Med J. 2019;32(37):1-14.


Oyeyipo IP, Skosana BT, Everson FP, Strijdom H, Stefan S. Highly Active Antiretroviral Therapy Alters Sperm Parameters and Testicular Antioxidant Status in Diet-Induced Obese Rats. Toxicol Reseach. 2018;34(1):41-48.


WHO. Updated Recommedations on First-Line and Second-Line Antiretroviral Regimens and Poost-Exposure Prophylaxis and Recommendations on Early Infant Diagnosis of HIV: Interim Guidelines. Supplement to 2016 Consolidated Guidelines on Te Use of Antiretroviral Dr.; 2018.

Taha H, Das A, Das S. Clinical effectiveness of dolutegravir in the treatment of HIV/AIDS. Infect Drug Resist. 2015;8:339-352.


Kandel CE, Walmsley SL. Dolutegravir – a review of the pharmacology , efficacy , and safety in the treatment of HIV. Drug Desing, Dev Ther. 2015;9:3547-3555.

Rhodes M, Laffan S, Genell C, et al. Assessing a Theoretical Risk of Dolutegravir-Induced Developmental Immunotoxicity in Juvenile Rats. Toxicol Sci. 2012;130(1):70-81.


Cruciani M, Parisi SG. Dolutegravir based antiretroviral therapy compared to other combined antiretroviral regimens for the treatment of HIV-infected naive patients: A systematic review and metaanalysis. PLoS One. 2019;14(9):1-17.


Daimari R, Oyekunle AA, Oyekunle A. Suicidal overdose of dolutegravir : A case report. South Afr J HIV Med. 2018;19(1):1-3.


Bhuyan AAM, Signoretto E, Bissinger R, Lang F. Enhanced eryptosis following exposure to dolutegravir. Cell Physiol Biochem. 2016;39(2):639-650.


Mondal D, Pradhan L, Ali M, Agrawal KC. HAART drugs induce oxidative stress in human endothelial cells and increase endothelial recruitment of mononuclear cells: Exacerbation by inflammatory cytokines and amelioration by antioxidants. Cardiovasc Toxicol. 2004;4(3):287-302.


Apostolova N, Gomez-Sucerquia LJ, Moran A, Alvarez A, Blas-Garcia A, Esplugues J V. Enhanced oxidative stress and increased mitochondrial mass during Efavirenz-induced apoptosis in human hepatic cells. Br J Pharmacol. 2010;160(8):2069-2084.


Iorjiim WM, Omale S, Etuh MA, Bagu GD, Ogwu SO, Gyang SS. EFV b -HAART Increases Mortality , Locomotor Deficits and Reduces Reproductive Capacity in Drosophila melanogaster. J Adv Biol Biotechnol. 2020;23(1):26-38.


Akay C, Cooper M, Odeleye A, et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol. 2014;20(1):39-53.


Smith RL, de Boer R, Brul S, Budovskaya Y, van der Spek H. Premature and accelerated aging: HIV or HAART? Front Genet. 2013;3:1-10.


Petrosyan A, Gonçalves ÓF, Hsieh IH, Saberi K. Improved functional abilities of the life-extended Drosophila mutant Methuselah are reversed at old age to below control levels. Age (Omaha). 2014;36(1):213-221.


Abolaji AO, Kamdem JP, Lugokenski T henrique, et al. Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radic Biol Med. 2014;71:99-108.


Alexander EM, Aguiyi JC, Mdekera IW, et al. The Climbing Performance, Neuromuscular Transmitter (ACHE) Activity, Reproductive Performance and Survival of Drosophila melanogaster Fed Diet with Mangifera indica Cold Aqueous Leaf Extract. J Appl Life Sci Int. 2019;1-11.


Adedara IA, Abolaji AO, Rocha JBT, Farombi EO. Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem Res. 2016;41(6):1430-1438.


Mohammad F, Singh P. A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs. BMC Syst Biol. 2009;3(11):3-17.


Abolaji AO, Kamdem JP, Lugokenski TH, et al. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster. Redox Biol. 2015;5:328-339.


Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19.


Martínez-Sánchez G, Al-Dalain SM, Menéndez S, et al. Therapeutic efficacy of ozone in patients with diabetic foot. Eur J Pharmacol. 2005;523(1-3):151-161.


Agarwal A, Virk G, Ong C, du Plessis SS. Effect of Oxidative Stress on Male Reproduction. World J Mens Health. 2014;32(1):1.


Ristow M, Schmeisser K. Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response. 2014;12 (2):288-341.


Blumberg J, Words KEY. Free Radicals : The Pros and Cons of Antioxidants Use of Biomarkers of Oxidative Stress in Research Studies 1 , 2. J Nutr. 2004:3188-3189.

Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48(6):749-762.


Greenspan RJ, Finn JA, Hall JC. Acetylcholinesterase Mutants in Drosophila and Their Effects on the Structure and Function of the Central Nervous System. J Comp Neurol. 1980;189:741-774.

Liebhaber M, Diego S. Cholinesterase Activity in Pregnant women and newborns. Clin Toxicol. 1994;32(6):683-696.

Haghnazari L, Vaisi-raygani A, Keshvarzi F, et al. Effect of Acetylcholinesterase and Butyrylcholinesterase on Intrauterine Insemination, Contribution to Inflammations, Oxidative Stress and Antioxidant status; A Preliminary Report. J Reprod Infertil. 2016;17(3):157-162.

Velazquez-Ulloa NA. A Drosophila model for developmental nicotine exposure. PLoS One. 2017;12(5):1-22.


Urra J, Blohberger J, Tiszavari M, Mayerhofer A, Lara HE. In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat. Sci Rep. 2016;6(30129):1-9.


Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer ’ s disease. Arch Toxicol. 2019;93(9):2491-2513.


Prakash M, Shetty MS, Tilak P, Anwar N. Total Thiols: Biomedical importance and their alteration in various disorders. Online J Heal Allied Sci. 2009;8(2):1-9.


Lü J-M, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840-860.


Husain N, Kumar A. Reactive Oxygen Species and Natural Antioxidants: A Review. Adv Biores. 2012;3(4):164-175.


Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253-263.


Frapsauce C, Grabar S, Launay O, et al. Impaired sperm motility in HIV-infected men: An unexpected adverse effect of efavirenz ? Hum Reprod. 2015;30(8):1797-1806. DOI:10.1093/humrep/dev141

Savasi V, Oneta M, Laoreti A, et al. Effects of Antiretroviral Therapy on Sperm DNA Integrity of HIV-1-Infected Men. Am J Mens Health. 2018;12(6):1835-1842.


Iorjiim WM, Omale S, Bagu GD, Gyang SS, Alemika ET, Etuh MA. Highly Active Antiretroviral Therapy Depletes Some Antioxidant Parameters and Increases Free Radical Generation in Drosophila melanogaster. J Adv Med Pharm Sci. 2020;22(2):41-51.


Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem. 2003;278(33):31426-31433. DOI:10.1074/jbc.M212549200

Kayode AAA, Kayode OT. Effect of Selected Antiretroviral Drugs on Malondialdehyde ( MDA ) and Catalase Levels in Healthy Rat Tissues. SMU Med J. 2014;2(1):191-201.

Adaramoye OA, Adewumi OM, Adesanoye OA, Faokunla OO, Farombi EO. Effect of Tenofovir, an antiretroviral drug, on hepatic and renal functional indices of Wistar rats: Protective role of vitamin E. J Basic Clin Physiol Pharmacol. 2012;23(2): 69-75.

DOI: 10.1515/JBCPP.2011.0042